Crust and upper mantle P- and S-wave delay times at Eurasian seismic stations
نویسندگان
چکیده
Median crust and upper mantle Pand S-wave delay times, based on residuals for teleseismic Pand S-wave arrival times included in the groomed ISC/NEIC database of Engdahl et al. [Bull. Seism. Soc. Am. 88 (1998) 722] are estimated as functions of time and azimuth for Eurasian seismic stations. The effects of source and lower mantle 3-D structure on the station residuals are corrected by ray tracing all phase data (to a depth of 400 km below the station) through the 3-D Pand S-wave models of Bijwaard et al. [J. Geophys. Res. 103 (1998) 30055] and Bijwaard [Seismic travel-time tomography for detailed global mantle structure. University of Utrecht, Utrecht, The Netherlands, 1999, 179 pp.], respectively. In general, crust and upper mantle Pand S-station delays based on medians of azimuthally binned residuals are spatially coherent and can be qualitatively associated with Eurasian tectonic features such as orogens and cratons, as well as with structural elements such as sediment and crustal thickness, and average uppermost mantle velocities. Paired Pand S-station delays are correlated with a rather poorly determined slope (S/P delay time ratio) of about 1.9. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Investigation of the strength and trend of seismic anisotropy beneath the Zagros collision zone
The Zagros collision zone is known as an active tectonic zone that represents the tectonic boundary between the Eurasian and Arabian plates. A popular strategy for gaining insight into the upper mantle processes is to examine the splitting of seismic shear waves and interpret them in terms of upper mantle anisotropy and deformation. Core phases SK(K)S from over 278 earthquakes (MW ≥ ...
متن کاملThickness of Crust in the West of Iran Obtained from Modeling of Ps Converted Waves
Receiver functions are usually used to detect Ps converted waves and are especially useful to picture seismic discontinuities in the crust and upper mantle. In this study, the P receiver function technique beneath the west Iran is used to map out the lateral variation of the Moho boundary. The teleseismic data (Mb ≥5.5, epicentral distance between 30˚-95˚) recorded from 2004 to 2016 at 17 perma...
متن کاملThree dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography∗
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green’s functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We t...
متن کاملMid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation
Observations of seismic anisotropy can offer relatively direct constraints on patterns of mantle deformation, but most studies have focused on the upper mantle. While much of the lower mantle is thought to be isotropic, several recent studies have found evidence for anisotropy in the transition zone and uppermost lower mantle (the mid-mantle), particularly in the vicinity of subducting slabs. H...
متن کاملMantle Heterogeneities and the SCEC Reference Three - Dimensional Seismic Velocity Model
We determine upper mantle seismic velocity heterogeneities below Southern California from the inversion of teleseismic travel-time residuals. Teleseismic P-wave arrival times are obtained from three temporary passive experiments and Southern California Seismic Network (SCSN) stations, producing good raypath coverage. The inversion is performed using a damped least-squares conjugate gradient met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001